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SOLVING UPWIND-BIASED DISCRETIZATIONS II: MULTIGRID SOLVER USING

SEMICOARSENING

BORIS DISKIN"

Abstract. This paper studies a novel nmltigrid approach to the solution for a second order upwind-

biased discretization of the convection equation in two dimensions. This approach is based on semicoarsening

and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse grids the

same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on

all the levels allowing a very efficient parallel implementation. The results of tile nunmrical tests can be

smmnarized as follows:

1. The residual asymptotic convergence rate of the proposed 1:(0, 2) multigrid cycle is about 3 per

cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid

algorittmls using full coarsening. The reported efficiency does not. deteriorate with increasing tile,

cycle depth (number of levels) and/or refining the target-grid nmsh spacing.

2. The full multigrid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2)

cycle on all the coarse grids always provides an approximate solution with the algebraic error less

than the discretization error. Estinmtes of the total work in tile FMG algorithm are ranged between

18 and 30 minimal work units (depending on the target discretization). Thus, the overall efficiency of

tile FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency.

3. A novel approach to deriving a discrete solution approximating tile true continuous solution with

a relative accuracy given in advance is developed. An adaptive nnlltigrid algorithm lAMA) using

eolnparison of the solutions on two successive target grids to estinmte the accuracy of the current

target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The

final target grid on which this accuracy can be achieved is chosen automatically in the solution

process. The actual relative accuracy of the discrete solution approximation obtained by AMA is

always better than the required accuracy; the computational complexity of the AMA algorithm

is (nearly) optimal (comparahle with the complexity of the FMG algorithm applied to solve the

problem on the optimally spaced target grid).

Key words, convection, upwind-I/iased discretization, nmltigrid solvers, textbook multigrid efficiency

Subject classification. Applied and Numerical Mathematics

1. Introduction. Full nmltigrid (FMG) algorithms are known to be very efficient solvers for compli-

cated systems of partial differential equations. It was rigorously proved (see [3] and [4]) that these algorithms

can solve a general discretized elliptic problem to the discretization accuracy in a computational work which

is only a small multiple of the operation count in the discrete problem itself. This efficiency is called the

textbook multigrid efficiency (TME). The target-grid (grid h) solution obtained by a FMG solver is usually

required t,o satisfy to the following condition: its algebraic error ]tu h- fih ]]must be less than the discretization

error ]lu j' - U hll, where u h is the exact discrete solution, fih is the FMG solution, U h is a reasonable target-
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grid representation of tile true solution of the differentiable equation, and I] " II is a given norm of interest.

Then the total error 11,5h- U hll is bounded above by sum of the algebraic and discretization errors. In solving

nonelliptic problems, regular FMG algorithms sometimes fail to achieve such an accurate solution and then

other very w()rk-consmning methods are applied (either instead of or in addition to a FMG algorithm) to

solve the problems.

The goal of achieving TME in solving complicated computational fluid dynamics (CFD) problems at-

tracts recently many researchers (see, e.g., the list of references in [5]). Many of textbook efficient multigrid

CFD solvers developed in tile last decade are based on the idea of separation of the elliptic and nonelliptic

factors contributing to the corresponding system of partial differential equations. (See [9], [14], [15], [17],

[18].) In all these solvers, the nonelliptic part was represented by the advection operator.

The simplest way to solve tile advection operator is to employ the downstream marching. If the cor-

responding discretization is a stable upwind discretization and the field of velocities does not recirculate,

then this marching proves to be a very efficient solver yielding an accurate solution to a nonlinear adw_ction

equation in just a few sweeps (a single downstream sweep provides the exact solution to a linearized prob-

lem). However, if a discretization of the advection operator is not fully upwind (e.g., only upwind biased)

the marching in its pure form is inapplicable. Other single-grid methods like defect-correction iterations or

predictor-corrector technique can be used instead. -In the recent paper [12], we showed that the number of

defect-correction sweeps required to derive an accurate solution to the target discrete problem may be grid

dependent. For example, in problems where the target operator is second order accurate while the correction

is computed in solving a first order accurate discretization, the necessary number of iterations grows on fine

grids approximately as h -l/a, where h is the grid meshsize. A detailed analysis of the predictor-corrector

scheme is the subject of future studies. In many practical cases, these single-grid methods may result in

very efficient solvers. However, each of them implements, one way or another, the idea of marching. In

other words, their efficiency is significantly based on the correctness of the order in which values at grid

nodes are updated. The consequent order of grid passages seems to be a serious obstacle for transferring

these algorithms on parallel computers. In this paper, we suggest a novel multigrid solver to the advection

equation employing colored relaxation schemes on all the levels. Coloring implies that discrete equations at

grid nodes of the same color can be relaxed simultaneously (in parallel). Such schemes naturally possess a

very high level of parallelism.

It has long been known that standard multigrid solvers to the advection equation employing full coars-

ening suffer an inherent slowdown in problems where the velocity direction does not coincide with the grid

lines (see [1], [2]). This poor convergence is explained by an increased cross-characteristic interaction (e.g.,

dissipation) on coarse grids. The difficulty associated with the cross-characteristic interaction is very pronfi-

nent in homogeneous problems with characteristics emanating from the boundary. In these problems, the

quality of the coarse-grid approximation is determined by how well certain incoming oscillations are advected

from tile inflow boundary into the domain. The increased coarse-grid cross-characteristic interaction causes

a decay and a phase shift of these incoming oscillations which are significantly different from their values

on the fine grid. Following [6], the cure proposed in this paper is to use semicoarsenin9 together with a

well balanced correction of coarse-grid operators allowing the coarse grids to maintain essentially the same

cross-characteristic interaction as on the target (fine) grid. The resulting nmltigrid cycles demonstrate good

asynlptotic convergence rates, far overcoming the theoretical limit for full-coarsening algorithms.

The efficiency of the present multigrid algorithm does not deteriorate in multiple iterations, i.e. it

demonstrates a good asymptotic convergence rate. Nevertheless, we believe that tile role of a fast asymptotic



convergence is ofl.en overestimated. It is true that in elliptic problems the asymptotic convergence rate is

defined by the slowest-to-converge error component and, therefore, a good asymptotic rate iml)lies good

convergence throughout the solution process. In solving nonelliptic problems, a fast asymptotic convergence

is usually achieved only when all the troubling components have already been carried out of the domain of

interest, by many (slower) iterations (see, e.g., [10] and [12]). Thus, fast converging iterations usually follow

many those with nmch slower convergence rates. Moreover, in some problems, yielding a very accurate

solution does not necessarily require a fast. per-cycle convergence. These considerations have brought us

to another important issue addressed in this paper which is criteria for stopping further computing when

an accurate enough solution is achieved. A widely used criterion is sufficiently small residuals in the cor-

responding discrete equations. To satisfy this criterion, the algorithm is generally expected to be iterated

many times and a good asymptotic convergence is, thus, really important. However, it was'realized in many

experimental and theoretical works that most of the computational time under this criterion is expended for

approximating the discrete solution rather than the true solution of the differential problem. An approxi-

mation to the differential solution within the discretization accuracy is reached long before the residuals in

the discrete problem are reduced to a desired low level. Moreover, small residuals cannot, actually, ensure

a good accuracy as well. In nonelliptic problems, some slow-to-converge error components are quite smooth

along characteristics and possibly oscillating in the cross-characteristic direction, therefore, their residuals

are very small comparing with other error components of tile same amplitude. Thus, small residuals (say, in

L2 norm) does not necessarily imply small amplitudes for these components.

The well-known alternative to the small-residuals stopping criterion is the FMG approach, where the

necessary number of iterations on each grid is defined in advance. This approach assumes an a priori choice

of a target grid and a discretization on it, and, then, the FMG algorithm provides a target-grid solution

approximation with the algebraic error less than the discretization error. This is a good option, especially,

when the accuracy of the target-grid discretization and convergence properties of the FMG algorithm for the

problem of interest were previously established. In many practical cases, however, where the true solution

is unknown, either analytically or from an experience, engineers opt to drive residuals to the machine zero

level in order to be sure that at. least the discrete problem is solved. Another difficulty associated with

both the "regular FMG" and "small residuals" approaches is the need of an off-line analysis in order to

establish the accuracy of the obtained solution. In many cases, this analysis indicates that either tile desired

aecuracy has not been achieved because of a bad discretization error on the chosen grid and the problem

should be resolved on a finer grid, or the desired accuracy could be reached on a coarser grid in much shorter

time. In this paper, we propose another criterion indicating that a solution approximation possessing a

desired relative accuracy has been obtained. This criterion is the comparison of solutions ou different grids.

Our experiments with an adaptive rnulti.qrid algorithm (AMA) using this criterion where the choice of an

appropriate final discretization grid is an essential part of the solver are reported in Section 5 (see. also [12]).

In Section 2, we formulate the model problem and introduce the main ideas for the multigrid treatment

of the cross-characteristic interaction. In the next Section 3, we define and test multigrid cycles which, then,

are employed in framework of FMG solvers (Section 4) and AMA solvers (Section 5).

2. Model Problem Description.

2.1. Differential Equation. The model problem we study in this paper is the two-dimensional (2D)

constant-coefficient convection equation



(2.1) LU _ (fi" V)U : F(x,y),

where /i = (al,a2) is a given vector. The solution U(x,y) is a differentiable function defined oll the unit

square (x, y) • [0, 1] × [0, 1].

Let 0 be the nonalignment angle (another name which is common in CFD is tile angle of attack), i.e.,

the angle hetween the vector _ and the positive direction of the x axis; t = tail ¢ = a.2/al is tile nonalignment

parameter. For siinplicity, we assume a horizontal inclination al _ a2 _>0 and, therefore, 1 > t > 0. V_ call

the x axis the reference axis.

Equation (2.1) cml be rewritten as

(2.2) O_U = f(x, y),

where f(x,y) = F(x, y)/lal tal = v/_l+ a_, and _ = _ is a variable along tile characteristic of (2.1).,

Equation (2.1) is subject to Dirichlet boundary conditions at tile inflow boundary x = 0 and periodic

conditions in the y direction.

(2.3) U(0, y) -- g(y), U(x, y) = U(x, y + 1),

where g(y) is a given function.

In the 2D constant-coefficient case which is studied in this paper, characteristics of (2.1) are straight

lines defined hy the velocity direction (characteristic lines). A function is called a characteristic component

if it is much more smooth in tile characteristic direction than in other directions. Possible extensions to the

three dimellsions (3D) and to variable velocity fields are briefy discussed at Section 6.

2.2. Target-Grid Discretization. The approach we follow is to use a fixed Cartesian coordinate

system independent of the characteristic direction. Ttle problem (2.2)-(2.3) is discretized on the 2D Cartesian

uniform grid with meshsize h in both the x and y directions. The target discretization grid is always assumed

to be a uniform (square) grid•

Let ui,,i.2 be a discrete approximation to the solution U(x, y) at the point (x, y) = (ilh, i.2h). To derive

a proper discretization, we exploit the idea of a low-dimensional prototype introduced ill [6]. Briefly, the

low-dimensional prototype is a good discretization of the target (nonelliptic) differential problem on the

grid induced by intersections of the Cartesian multidimensional discretization grid with the characteristic

(low-dimensional) manifold (characteristic line in our case). (See Figure 2.1.) For our studies, we choose

the low-dimensional prototype to be the (one-dimensional) second order accurate four-point discretization

of the first derivative, corresponding to the Van Leer's scheme with t¢ = 0.

4h lx/i--_-_ Uil+l'i2+t -[- 3Uil,i2 -- 5?_il-l,i2-t + Uil-2,i2-2t = fil,i2"

The 2D discretization is obtained from the low-dimensional prototype by replacing function values at

the ghost points (points with fractional vertical indexes) by weighted averages of the values at the vertically

adjacent genuine grid points. The resulting narrow diseretization is defined by

il = 1,2 .... N-l, i.2 =1,2,...N, N = l/h;

Uo,i, = g(i.2h), u-1,_2 = g'(i.2h).



The outflow boundary conditions at il = N are discretized by the second order accurate narrow upwind

scheme.

(2.6)

+t (3UN,_.2 -- 4_'N-,,i2-1 + UX-2.i2-2)) = :X.i2.

In numerical experiments reported beh)w, we used a corrected outflow discretization to provide the same

cross-characteristic interaction as in the interior of the domain. See details in Sections 2.3 and 2.4. The

discretization of tile right-hand side function is fi,,__ = F(ilh, i2h)/[h]. Function g'(y) is an additional

numerical boundary condition. In model problems, where the exact solution U(x,y) is known, one can

define g'(y) = U(-h, y).

The discrete scheme (2.5) is upwind biased, i.e., not a pure upstream scheme, in the interior since, for

defining the operator value at the point (il, i,), the solution values at the downstream points (il + 1, i2) and

(il + 1, i2 + 1) are required.

2.3. Cross-Characteristic Interaction. The cross-characteristic interaction introduced by a discrete

operator can be quantitatively estimated as the coefficient of the lowest pure cross-characteristic derivative

appearing in tile first differential approximation (FDA) to the discrete operator (see [19]). The FDA to (2.5)

taken for the characteristic component is given by

(2.7) FDA(L t_) = O_ - h2t(l12v_- t)(l+-t '22t) Oyy'v". + h3t(1 - t)(18vZi-+3tt2+ 3t e) 0uvvv'-

We included two (the second and the third order) terms into consideration in order to secure a more gener-

ality. Usually, the second order term (related to 0uvv) determines tile main part of the cross-characteristic

interaction; at some slopes (t _ 0.5), however, this term degenerates and the following third order term

becomes important. Moreover, involving these two terms together makes possible to apply the same argu-

ments to analyzing other (possibly higher order) advection schemes, e.g., Van Leer's schemes corresponding

to different h_.

The true measure of the cross-characteristic interaction should be calculated as a coefficient of a derivative

In the constant-coefficient narrow-discretizationwith resl)ect to the cross-characteristic variable 71= _T_-"

case, however, this coefficient is just proportional to the factor of the corresponding y-derivative. The

cross-characteristic interaction induced by the operator itself is referred to as inherent cross-characteristic

interaction, to distinguish it from the explicit cross-characteristic interaction introduced below.

Previous studies on different types of nonelliptic equations (see [1], [6], [9] and [11] ) have shown that

the main difficulty in constructing an efficient multigrid solver is a poor coarse-grid approximation to the

fine-grid characteristic error components. It was observed that a coarse-grid operator defined on a grid built

by full coarsening (i.e., when all the coarse-grid meshsizes are twice as large as their counterparts of the

fine grid) unavoidably introduces a too strong cross-characteristic interaction. On the other hand, a narrow

discretization on a semicoarsened grid (only the reference axis meshsize is doubled) results ill a coarse-grid

cross-characteristic interaction which is weaker than required. However, we can supply this operator on

the semicoarsened grid with additional (explicit) terms, so that the total coarse-grid cross-characteristic

interaction would be exactly the same as on the fine grid.



2.4. Coarse-Grid Discretization. The coarse grids used in this multigrid construction are rectangu-

lar grids with fixed (integer) aspect ratios m = h,/h_, where h, and hu are the meshsizes in tile x and y

axes respectively.

The preliminary (without explicit terms) narrow coarse-grid diseretization on the grid with aspect ratio

m is derived fi'om the low-dinmnsional prototyt)e (of. (2.5) and (2.6)).

(2.8)

(2.9)

il = 1.2,...M-I,

L(h*'hu)'ttit52 _ 4)nhyv/]__ , .

+8('ti,+l.i_+(k+l) + 3_til,i'2 -- 5'ail-l,i2-(k+l) -}-ui,-2,i2-2(k+l,)) : fil,i2;

L(h*'h_)UM,,.,'=--.,,,a,_./V_V( (1--S)(3UM,_:--4UM-,,_2-k+UM-'2,_2-2k)

i2 = 1,2 .... N, M = l/h, = 1/(mhu), N = 1/h,;

where k + ,s = mr, k is integer, 0 < .s < 1. The first differential approximation to the discretization (2.8) in

the interior of the domain is

.,8(1-8)(1-_s) 8(1- 8)(1- 38 382)(2.10) +8mvri + t2 Ou_"

The first differential approxiination to the outflow boundary condition discretization (2.9) is given by

(2.11) FDA(L(h*'h_))=O_-h_ 8(1-8)(1-2s)_---=:=i _uu.q+h_S(1-s)(1-38+3s2)O_uu.
3mv/] - + t" '" 4mv_ + t 2

Comparing the coarse-grid FDAs (2.10) and (2.11) with the target grid FDA (2.7) one (:an derive the final

form of the coarse-grid operators on a grid with an aspect ratio m

(2.12)

L(h,.hulllM.i2 _ 2mhu_v/__ _

il = 1,2,...M

(1-- 8) ('Uil+l,i2+k + 3ui_,i: - 5"aix-l,i2-k + ui,-2,i2-2k)

+,'_(**i,+l,i,,+(k+l) + 3'*i,,i: -- 5Uil-l,ia-(k+l) +'ai,-2,i2-2(k+l)) )

+_ulUi,,i2+2-- 3Ui_,i2+, + 3Ui,,i=-I--?ti,,i2-2)

+_(ui,,i=+2 4ui,,i._,+, +6ui, i° -4uil,i=-x +ui,,i:-2) = fi,.i.a;

(1-8)(3uM,i:--4UM-a,i,-k +UM-2,i,-2k)

+}_,-_.lui,.i2+') 4ui,,i.+I +6ui,,i.-4ui,,i,-, + ui,.i.-2) = fM,i,;

- 1, i2 = 1,2,...N, M = l/hx = l/(mhu), N = l/hy;



s

s
s

----w

S

s

I
d

S
S

S

s _

() C

jJ

() e (

S
J

s

fl¢

q) (

hx

O 2D discretization stencil

• Low-dimensional prototype stencil

--- Characteristic line

Fro. 2.1. 2l) coarse-grid discretization stencil

where

A3-12v_(-t(1-t)(1-2t)+s(1-s)(1-2s)/m);

A4 = _(t(l- 0(1- 3t + 3t 2) -8(1- 8)(1- 3s + 382)/m_;
#

(2.13) 1
Aa

\

It(1 - t/(a - at + 3t"//8 - 8(1 - 81(1 - 3._+ 382t/(4.0).A_ _

See Figure 2.1 for a pictorial representation of tile discretization stencil in the interior of the domain.

This choice of coarse-grid operator in combination with semicoarsening provides tile same absolute p#H

and relative f;n approximation orders of L (h_'h_) to L h with respect to characteristic components, p_# =

/5Hh= 2 (in terminologv., of [20]). This, in turn, ensures us a good coarse-grid correction to the characteristic

error components.

Discretization (2.12) implies a small correction to the target-grid discretization of outflow boundary

conditions. Generally speaking, the cross-characteristic interaction in discrete operators at the target-grid

outflow boundary does not play an essential role since its influence on the solution in the interior is minimal.

On coarse grids, however, where outflow boundary operators are "responsible" for a larger part of the

domain, it is important to adjust their total cross-characteristic interaction to that interaction in the target-

grid interior operator. We decided to apply the outflow boundary discretization proposed in (2.12) already

on the target uxfifornl grid (m = 1). It means that the target-grid outflow houndary discretizations include

explicit terms with non-zero coefi%ients _4:_ and .214. The values of A3 and A4 in the interior of the target

grid are zeros by definition.



2.5. Strong Cross-Characteristic Coupling. Our multigrid construction employs semicoarsening

and narrow coarse-grid discretization schemes supplied with explicit higher order terms (which are discrete

approximations to the vertical derivatives of suitable orders) in order to maintain on the coarse grids the

same cross-characteristic interaction as oll the target (fine) grid. Then, the characteristic error components

are well eliminated by the coarse-grid correction. The noncharacteristic error components must be reduced

in relaxation. Oil several finest grids, where the direction of the strongest coupling approximately coincides

with the characteristic direction, one can derive a pointwise relaxation scheme which reduces efficiently all

the components oscillating in the characteristic direction. However, successive semicoarsening implies a

fast decrease ill the inherent cross-characteristic interaction on coarse grids and, hence, a fast increase in

the weight of the explicit terms in the coarse-grid operators (since the total coarse-grid cross-characteristic

interaction remains fixed). Thus, the direction of strongest coupling tends to be vertical. After several

semicoarsening steps, hence, any pointwise relaxation scheme fails to reduce the noncharacteristic error

coulponent s.

Roughly speaking, pointwise relaxation schemes loose their smoothing properties on grids where the

"cross-characteristic" coupling becomes stronger thin1 the "characteristic" one. The qualitative description

of relations between the couplings can be derived from the analysis of the symbol of the corresl)onding

coarse-grid operator (see Section 3.3.1). This analysis tells us that the efficiency of pointwise relaxations

may degrade on grids with aspect ratios m > 54.

There are several ways to prevent this degradation:

1. The first is to use vertical line relaxations in which points located on the same vertical grid line are

relaxed sinmltaneously. Such a relaxation is required only on coarse grids with aspect ratios m > 54.

Practically it means that on fine grids (m _< 32) a pointwise relaxation scheme can be efficiently

used, while on coarser grids (m _>64) a line relaxation is employed. This method can be efficiently

extended to the three dimensions (3D) (with a corresponding replacement of line relaxations with

plane relaxations) and variable coefficient problems. This first method is extensively studied in this

paper.

2. The second method is to widen gradually the basic narrow coarse-grid discretizations in order to

im:rease tim inherent cross-characteristic interaction and to reduce, in this way, the weight of tile

explicit terms in the coarse-grid discretization. This method is very flexible. It eliminates the need

of using line relaxations on coarse grids and, therefore, it is well suited for multiblock grids required

for calculations in complex geometries. This approach is briefly discussed in Section 6.

3. The third way is to use conditional coarsening technique, where a strong cross-characteristic coupling

can be avoided by replacing part of the semicoarsening steps bv full coarsening steps (see [11]). This

conditional coarsening approach seems to be slightly cheaper than other in computing time but

considerably more complicated to prograIn, especially in extensions to variable coefficients.

3. Multigrid Cycles.

3.1. Multigrid Cycle for Low-Dimensional Prototype. The first necessary step is to derive an

efficient solver h)r tile prototype prolflem. This solver, then, will serve us as a model for a multigrid solver in

the full dimension. The one-dimensional Inultilevel l'(ul, u2) cycle we have studied for the prototype problem

consists of a colored relaxation scheme, an upwind-biased residual transfer and a linear interpolation of the

coarse-grid correction. On each level, except the coarsest one where the problem is directly solved, ul

relaxation sweeps are perforIned before transferring residuals to the coarse grid and u2 sweeps are performed

after receivillg coarse-grid corrections. Below, we present a detailed description of all the components of this
i



cycle.

On the grid induced on tile characteristic line, the one-dimensional prototype problem can be rewritten

in new variables (cf. (2.4) and (2.5)) as

'( )L(1Dlttil =-- _ Itil+l A- 31li 1 -- 5lt.i l_l A- Uil-2 = fil,

i_ = 1,2 .... N - 1;
(3.1)

L(ar))ux - _ 3uN -- 4_N-1 + _X-2 = fx;

_t0 = g0, U-I = oO1;

where h( is the meshsize between nodes of the low-dimensional prototype discretization.

3.1.1. Relaxation Scheme. The downstream pointwise Gauss-Seidel relaxation scheme for the one-

dimensional prototype interior equation (3.1) is unstable. In spite of the fact that an inunediate error

explosion can be prevented by using a color order of the relaxation passage, we decided to pick a stable

relaxation scheme. This is done mainly because of the observation that (high-frequency) instabilities in

schemes are usually acctunpanied with bad smoottfing properties (especially, in further multidiinensional

extension). The relaxation scheme chosen for the problem (3.1) is a three-stage defect-correction-type scheme.

Stage 1: The residual function for the target problem (3.1) is computed.

(3.2) ri_ = fi, -- L(l_)ifii,, il = 1,2 .... N - 1;

where "hi_ is the current solution approximation.

Stage 2: The correction vi, is calculated by relaxin9 the system

Ldt_ii = ri,, il = 1, 2,... N - 1;

where v'i_ (il = -1,0,..., N, N + 1) are initialized by zeros and operator L_ is the target operator

L (aD) supplied with ai1 additional (third order) dissipation term:

Ldvil =-- "_( uil+l + 3_'.it - 5_!i1--1 "_- Vi 1 --'2 -_-

h-_ _'_i1+2 - 4t_it +1 -t- 6'1_i 1 - 4vi_-1 -t- vi,-2 •

The parameter )_ is chosen to maintain stability in the downstream marching. In our tests, we have

picked ,_ (approximately) equaled to the minimum positive value ensuring that all the (possibly

complex) roots of the quadratic equation

3 5+ 6 )z - + 4; )z + 4 + = 0

are inside the unit circle. It was found numerically, that _ _ 0.084.

Stage 3: The current approximation fii, is corrected to the improved approximation ui, by

_llil:_tit-4-_b'il, il = 1,2,...N- 1;

1( )fiN = "_ 2fxh( - (-4tiN-1 + ux-2) •

We still have some freedom in choosing the order of the relaxation passage on Stage 2. It is proved

that the best smoothing is observed in the downstream marching. However, smoothing rates of colored



relaxationsctmmesarealsoquitegood.A colored(with p colors) relaxation order is defined as following.

One colored relaxation sweep consists of p passages, each passes through (approximately) N/p points. In

the first passage, all the t)oints with coordinates il = 1 + jp (j is a non-negative integer) are relaxed; in the

second passage, all the points with coordinates il = 2 + jp are relaxed (in this passage the new values at

previously relaxed points are used); and so oil till all the points are updated. The minimum p required to

enable a fllll parallelization and preclude the appearance of relaxation boundary layers is p = 4. This choice

of p already provides a very good smoothing rate (see the 2D mode analysis in Section 3.3.2 where this 1D

prototyt)e appears as a particular case of alignment). Moreover, the soothing rates is fllrther improved for

p > 4. Thus, in practical problenls the maximal possible p should be picked on. In our tests, we have mostly

experinmnted with p = 4.

3.1.2. Residual Transfer. At this stage, we compute a coarse-grid approximation to the current

fine-grid residual function (3.2). This fine-to-coarse transfer (restriction) is defined by

1 (r2i, + ),(a a) Ri, = _ r2i, 1

where R and r denote tile coarse- and fine-grid residual fimctions respectively.

3.1.3. Coarse-Grid Correction Interpolation. The coarse-grid correction V is interpolated (pro-

longated) to the fine grid by

(3.4) { v2i' = l'/i' )v'2i,-i = _ I i,-_ + I

where _, is the correction to the fine-grid solution approximation.

3.1.4. Efficiency. We have experimented with a two-level V(0,3) algorithm on different grids with

different right-hand side functions f. The tests have deinonstrated good convergence rates. Tile worst rate

obserw_d in a cycle during the solution process is about 3, while the asymptotic convergence rate is better

than 6 per cycle. For p = 8 and the correst)onding values are 3.7 (the worst per-cycle convergence rate)

and l0 (the asymptotic convergence rate). The two-level discrete half-space and matrix analyses which are

too cumbersome to be presented here (see some examples of the analyses in [8], [10], and [12]) predict the

low [)ound for the convergence rates to be 2.a per cycle. Tiffs bound does not depend on h and p providing

p << h 1.

3.2. Two-Level Cycles. In this section, we discuss the basic parts of the full-dinmnsional (2D) multi-

grid cycle such ms relaxation schemes, residual transfer and coarse-grid correction interpolation.

3.2.1. Pointwise and Line Relaxation Schemes. Tile relaxation schemes defined in this section are

derived from the colored one-dimensional schemes described in Section 3.1.1. The operators involved are, of

course, extended to the two dimensions. The target operator L (h''hu) on an anisotropic grid with an aspect

ratio u_ is given in (2.12). The "driver" operator Ld which is relaxed for the error equation on Stage 2 (see
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Section3.1.1),isdefinedas

L(h"h_)vi_ 52

/

] --2,12-- 2/, ]

\

"_-S( Uil+2,i2+2(k+l) -- 4Ui]+l,i2+(k+l )

-_-GUit,i2 -- 4Uil-l,i2-(k+l) "gv Uit 2,i2-2(k+1))

-s(1-_') (1- 3s + 3s 2) (vi,,i_+'_,- 4vi,,i._+l + 6vi,,i2 -4vi,,i_-, + vi,,i,_,-_)),

where the nonalignment parameters k and s are defined in Section 2.4, A = 0.084, h_ = mhuv/1 + t2, and

the added artificial dissipation term approximates the differential operator Ah_O_(.

The number of colors p determines the order of relaxing the vertical grid lines. The lines with horizontal

coordinates/l = 1 + jp, (j E Z) are relaxed first, then the lines with il = 2 + jp, and so on; the lines to be

relaxed last are those with il = (p- 1) + jp. In all the numerical tests below, we used p = 4. The difference

between line and pointwise relaxation schemes to be used is how the solution values at the same vertical

grid line are updated. In the line relaxation scheme, all the equations centered at the same vertical grid line

are solved all together. Sinmltaneous replacement of solution values at all the grid nodes belonging to the

line reduces residuals on this line to (nearly) zero. In a pointwise relaxation, the solution approximation is

changed in a point to satisfy the only discrete equation defined at this point. The orders of relaxing the

grid points on a line can be different. I_ use the four-color order in which relaxation on a line is performed

in four passages. Each passage updates every fourth points. The first passage starts from the point with

vertical coordinate/.) = 1; the second, from the point with i., = 3; the third, from the point with i2 = 2;

and the last, from the point with i2 = 4. This pointwise (sixteen-color) relaxation scheme is efficient and

especially attractive for fi_rther implementations on parallel computers.

3.2.2. Intergrid Transfers. The residual transfer to the semicoarsened grid is given by

.5(r2i,,i._ + (1- .s)r2i,-,,i_-t. + sr2i,-,,i2-(k+,)),(3.5) Ri,,i_

where ri_,i,., = fil,i2 - L(h"hu)uil,i_. is the fine-grid residual function, and Ril,i2 is the coarse-grid residual

function. This restriction operator possesses the low-fi'equeney order _-nn = 1 and the high-frequency order

m n = 1 (see definitions of intergrid transfer orders in [20] and no_e that in semicoarsening algorithm only

two fine-grid component are coupled on the coarse grid).

The coarse-grid correction operator is a linear interpolation defined by

v')i_-l,i_ = (1 -- 8)I'_1_1,i2_ k -']- 8I_1_t,i2_(k+1) -']- (1 - s)_'_,,i2+k + sVi_,i_+(k+l ,

where I" is the coarse-grid solution and v is the correction to the fine-grid solution approximation. The

low-frequency and the high-frequency orders of this prolongation operator are 7hp =mp ----2.

Thus, the intergrid transfers satisfy the necessary conditions (derived in [20] and earlier in [4] and [13]) to

provide a grid-independent convergence: mn+ mp> 1 and max(_hn, _hp) > 0.

3.2.3. Numerical Tests. In the full dimension, a two-level cycle t_ (ul, u2) employing semicoarsening

can be defined as the following six steps
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Step 1 Prerelaxation sweeps. Tile current approximation is improved by ul relaxation sweeps.

Step 2 Residual transfer. The coarse-grid approximation to the fine-grid residual function is calculated by

means of (3.5).

Step 3 Coarse-grid operator. Tile new values of tile coarse-grid parameters m, k, ,_, A:_, A4, 51:_, and .4,1 are

calculated. The coarse-grid equations (2.12) are formed.

Step 4 Coarse-grid solution. Tile coarse-grid problem is solved. Its solution approximates the fine-grid

error function. On this stage, we do not specify the solution method. It can be any method (direct

or iterative) allowing to obtain an accurate solution to the coarse-grid t)roblem.

Step 5 Coarse-grid correction. The coarse-grid solution is interpolated by (3.6) to the fine grid. The current

fine-grid approximation is corrected.

Step 6 Postrelaxation sweeps. The current fine-grid approximation is improved by t'2 relaxation sweeps.

We restricted ourseh.'es to considering 1_(0, 2) cycles. Such cycles (with uj = 0) are especially attractive

for parallel computing (see [7]). In numerous computational tests, we compared the performance of I._(0, 2)

cycles with either flfll or semicoarsening on grids with different aspect ratios m = 1,2,4 ..... 512, 1024.

Within the cycles employing semicoarsening, two types of relaxations (pointwise and line relaxations) were

tested.

In all the two-level tests, we used the zero right-hand side function fi_ ,i2. The inflow boundary conditions

were chosen so that the fimction U(x, y) = sin(w(y - tx)) is the exact continuous solution of the homogeneous

problent (2.2), (2.3). The coetficients A:_, A4, -A3, and ,_14of the explicit terms in the fine-grid discretization

were derived from the assumption that this fine grid itself was obtained from a uniform grid by (log 2 m steps

of) semicoarsening. In other words, the total cross-characteristic interaction in the fine-grid discretization

was the same as the inherent cross-characteristic interaction in the interior of a uniform grid with meshsize

by.

A representative sample of the experimental results is shown on Figure 3.1. Each experiment included

three different runs, each starting from the same initial approximation obtained by interpolation from the

solution on semicoarsened grid. Both the pointwise and the line relaxation schemes used in the runs are

described in Section 3.2.1 al)ove. Run 1 (inarked I)y pluses) employed the pointwise relaxation schenm and

flfll coarsening. For small asl)ect ratios, where the inherent coarse-grid cross-characteristic interaction was

stronger than the desired total cross-characteristic interaction, the coarse-grid values of A3, A4, -513, and .5-14

were set to zero. Run 2 tested the pointwise relaxation scheme together with semicoarsening. Run 3 used

the line relaxation scheme and semicoarsened coarse grid. Each run consisted of 20 cycles; the ratio of L_

norms of the residual before and after each cycle is calculated an(l pictured in the diagrains on Figure 3.1. In

all the graphs on Figure 3.1, the horizontal coordinates serve to mark the cycle numbers. On vertical axes,

the per-cycle convergence rates are displayed. Other notations used in titles on Figure 3.1 are following:

m = h_/h_ is the fine-grid aspect ratio, where h_ and hy are the eorrest)onding x- and y-directional fine-grid

meshsizes; t is the nonalignment parameter; w is the frequency of the incoming coml)onent; RC is a relative

(:Oul)ling parameter. RC > 1 corresponds to discretizations for which smoothing properties of pointwise

relaxations deteriorate. The methodology of calculation this RC parameter is described in Section 3.3.1. In

all the tests pictured in Figure 3.1, we picked the nonalignment parameter t = 0.2, except the last test where

t = 0.98. The value t = 0.2 roughly corresponds to the maximum inherent cross-characteristic interaction.

The fi'equencies a,, were chosen to satisfy to the two conditions: first, a,, = 2'_7r, (_ is integer) to reduce the

total computational time exploiting the vertical periodicity; second, the fine-grid discrete solution should

t)rovide a reasonable accuracy in approximating the true solution of the differential e(luation. The last
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hy=2 -8, m=hx/hy= 1, t=0.2, RC=0.131, _= 32_.

1 i i = i
2

= 2 -10
hy , m=hx/hy= 4, t=0.2, RC=0.131, o_= 128_.
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hy=2 -13, m=hx/hy= 64, t=0.2, RC=1.822, o)= 512_.

hy=2 -15, m=hx/hy= 512, t=0.2, RC=15.925, r.e=1024_.

= 2-13,
hy m=hx/hy= 128, t=0.98, RC=0.846, co= 512n.
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1
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FIG. 3.1. Residual convergence history in two-level experiments: Run 1 (pluses) is 1:2(0, 2) cycle with full coarsening;

Run 2 (triangles) is i:2(0,2) cycle with semieoarsening and pointwise relaxation; Run 3 (pentagrams) is _:2(0,2) cycle with

semicoarsening and line relaxation.

experiment was added to confirm the claim that the algorithm efficiency, actually, depends on the relative

coupling RC rather than on aspect ratios. (Compare the last experiment and the test on grid with m = 32).

In particular, in cases of alignment (t = 0 or t = 1), the pointwise relaxation scheme can be efficiently applied

on any grid with any aspect ratio.

The first very prominent observation from analyzing the results of numerical tests is the superiority of

the semicoarsening algorithms over the algorithm with fldl coarsening. The two semicoarsening algorithms
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show a similar behavior for discretizations with small values of the relative coupling (RC _< 1, m _< 32).

When RC >> 1, only the algorithm employing the line relaxation scheme demonstrates a fast convergence.

Note 1 Attempts to use higher order intergrid transfer operators result in some improvements in the full-

coarsening algorithm, especially, on grids with RC _ 1. However, this improved convergence still

cannot conq)ete with convergence rates demonstrated in the semicoarsening algorithm employing

the line relaxation scheme.

Note 2 Inclusion of these higher order operators into semicoarsening algorithms deteriorates tile convergence.

3.3. Fourier Mode Analysis.

3.3.1. Coupling Analysis. The coupling analysis presented in this section studies the discrete opera-

tor symbol L((_), (_ = (0_, 0u). By definition, the symt)ol of a discrete operator is the resl)onse of this operator

on th(, discrete Fourier coral)orient e i(e_ i_+o_ i.,,)

L(h.,t,_)ei(O.i_+o_i'2) = L(O)ei(O.i_+oyi2).

The smoothing properties of pointwise relaxation schemes for discretized partial differential equations are

essentially (tetermined by the measure of h-ellipticity in the target discretization. (See [1] and [2].) Briefly,

the measure it of h-ellipticity is calculated as tt = min IL((_)I, where tile minimum is taken over all the high-

frequency Fourier components. The Fourier mode c i(°- i_+0_i2) with normalized frequencies (lOx I <- 7r, I0_ [ <_ 77)

is called a high-frequency mode if max(10_l , 10xl) _> 7r/2. A discrete operator is called h-elliptic, if/_ is

separated from zero (it _> constant > 0). Roughly speaking, the larger absolute values of the discrete

ot)erator symbol for given high-fl'equency Fourier components tile better these components are eliminated

t)y relaxation from tile error flmction.

The multigrid construction proposed in Section 3.2 ensures a good approximation to the characteristic

components of the solution. The noncharacteristic error coinponents must be removed in relaxation. Let 0_

be a normalized characteristic frequency defined by 0_ + 77 =- (0x + mtOy) rood 27r. The noncharacteristic

coInponents correspond to ]0_1 _> 7r/2. Thus, while the discretization is semi h-elliptic in the characteristic

direction, i.e., ]L(_))] is large enough fi)r all 0 satisfying 10_1 k 77/2, one can derive a pointwise relaxation

scheme which efficiently reduces the noncharacteristic error comt)onents. The measure of the characteristic

eouplin!] (see Section 2.5) can be computed as

t,0= min IL(t_)l.
10_1_>_/')

In our constant-coefficient model prot)lem, the cross-characteristic coupling is mainly determined by the

vertical interactions and, therefore, its measure can be defined as

/_1 = nfin ]L(t})l.
10_1_>_/2

On grids with large aspect ratios m > 64 where _1 >> IL0, the diseretization becomes semi h-elliptic in the

vertical rather than in the characteristic direction and pointwise relaxation smoothing factors deteriorate

for the noncharacteristic error components. Thus, the range of applicability of pointwise relaxations can be

described by the value of the relative coupling parameter RC =/q/#0: if RC < 1, then one can derive an

efficient pointwise smoother, otherwise, a line relaxation should be used. The RC values in different two-level

tests are displayed on Figure 3.1.
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3.3.2. Smoothing Factor of Four-Color Line Relaxation. Tim symbol of the four-color line relax-

ation Z(0) defined in Section 3.2.1 is a 4-by-4 error amplification matrix acting on a four of Fourier modes
i(O j il +0,_ i2 )e _ , j = 0, 1 2, 3; where 0j are normalized frequencies satisfying 0j + 7r = (0_ + jrr/4) rood 27r

(Pe{I_<_).

z(O)=
Co(g°)) Cl(g°)) C2(0(°)) Ca(go)))

Ca(O(1)) C0(0(_)) C_(0(_)) C2(O(1))

C2(0(_)) Ca(Oc2)) Co(g')) G(g2)) '

Cl(g a)) O_,(0(a)) Ca(0(a)) Co(0(3))

where OJ = (0_., Or). Parmneters co(O), C, (0), C2(0), and Ca(O) are defined as

(c,,(0) )
02(0) = at

ca (0)
1/()1 _ I"i(0)

1 I) (0)

1 I_ (0)

,_I is a constant matrix

1 1 1 1)

1 -i - 1 i 1

M = _ -1 1 -1 1 "

i -1 -i 1

_o(0) =

(o) = (

(

L(O)/La(O_),

L(O) - e-iO* r2(oy) I'o(O) ) / La(Ou),

L(O) - e-2i°* Ll (Oy)Vo(O) - e-i°" L2(Ou)l ] (0)

(o_)_o(0)) Ira (o_),

L(O) - e -2w" L_ (Ou)I'] (0) - e -_°" L2 (Ou)l')(0)

__o. L_(O_) (0) - e_°" L_(0_) (0)] /L3 (0_);
/
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Ll(O_) = (

L2(Ou) = (

L:_(0u) = (

Ln(Ou) = (

1/4((1- 8)e -i2kOu + Se-i2(k+l)Ou)

(_ ))+A (1 s)e -c,'k°" + se ,,(k+a)0_ /(mv/-f + t2),

-5/4((1- s)e-ik°_ + se-i'a+')o_)

-4A((1 - s)e -ik°. + se-i(A'+')°_ ))/(mv_
+

3/4 + Aai(sin(2Oq)-2 sin(0u) ) + A4 (2cos(20u)- 8cos(0u)+6)

+A(6 - s(1 - s)(1 - 3s + 382)(2cos(20u) - 8 cos(0u) + 6)))/(my/1 + t'2),
F

1/4((1- s)eil"°_ + sei(k+')°_)

_ 4 _ _ _ 1 +<,>,
I

t is the nonalignnmnt parameter..43, A4, A, k, and s are the parameters of discretization (2.12) on the grid

with aspect ratio m. L(O) is the discretization symbol:

L(O) = e-i2°_ Ll (Oy ) + e-i°. L2(Oy) + L3(Oy) + ei°_ L4(Oy) + ei2°" Ls(Ou).

Following [16] w(, define the smoothing factor of the four-color line relaxation as the spectral radius of

the matrix product Q(O)Z(O), where

Q(O) =

qo 0 0 0 I

0 ql 0 0 .

0 0 q2 0 '

0 0 0 q3

qj = 1 (j = 0, 1,2,3), if 7r/2 _< IO_j)) <_ 7r, where O_j) + rr = (07) +mtOv ) rood 27r;

and qj : 0 if IO_J)l < 7r/2.

We picked A = 0.084 and calculated smoothing factor Sin1 for a variety of different slopes t and aspect

ratios m (all other parameters are derived fi'om these). In all cases, Srnl < 0.54. The smoothing rate of

two successive four-color line relaxation sweeps Sin., which is defined as the spectral radius of Q(0)Z((_) 2 is

Sin2 < 0.45.

3.4. Multilevel Cycles. We performed many experiments with a multilevel I'(0, 2) cycle on uniform

grids varying the nonaligmnent parameter t, the frequency w of the incoming Fourier component, and the

right-hand side function f. The nmltilevel cycle l_(ua, u2), where d is the cycle depth is defined similar to

the two-level cycle (see Section 3.2.3) but Step 4 is replaced with recursive call of the same cycle applied to

the coarse-grid problem. The coarsest grid where the problem is solved precisely is always the grid having
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FI(;. 3.2. Residual convergence history, in multilevel experiments on target uniform (square) grids.

eight inesh spaces in the x direction in the interior part of the domain. V_ sinlplified the criterion of

switching from pointwise to line relaxation to tile following rule: pointwise relaxation sweeps are employed

on grids with aspect ratios m < 32; on grids with higher aspect ratios the line relaxation is used. Figure 3.2

demonstrates results of nulnerical tests performed on different uniform target grids. Similar to tile two-level

tests we considered the homogeneous problem with boundary conditions derived from the assumption that

function U(x, y) = sin(a:(y- tx)) is the exact solution of the differential problem. Initial approximations were

obtained by interpolation of the exact discrete solution from the next immediate coarse grid with aspect ratio

m = 2. In all this experiments, we picked t = 0.2 and solved the t)roblems for incoming components with the

same normalized frequency w,h = :r/8. The graphical results confirm that the multigrid cycle convergence

rates are grid independent. Tile residual convergence rate histories on the three finest of the tested grids are

practically undistinguished.

We also performed many numerical experiments testing the dependencies on the nonalignment parameter

t and incoming frequencies w. The results can be summarized as following:

1. In the first cycle, the L_c residual norm of tile error is reduced by ahnost an order of magnitude.

2. In the first three cycles, the overall error reduction (also in the L_ residual norm) is more than two

orders of magnitude.

3. The convergence rates in further cycles are ranged between 2 and 3.6 per cycle.

4. Full Multigrid Algorithm (FMG). The goal of an FMG algorithm can be formulated as fast

obtaining an accurate solution for a given diseretization on a given target grid. A solution approximation is

considered to be accurate if its algebraic error is less than the discretization erx'or. In this section, we present

an FMG algorithm based on the multilevel V(0, 2) cycle. Tile setup work required for this algorithnl can be

described as the following four steps:

Step 1. TaTyet-grid problem. The discrete problem (2.12) is formulated on a uniform (m = 1) target grid.

The total cross-characteristic interaction for the entire algorithm is defined as the inherent (:ross-
i
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Step 2.

Step 3.

characteristic interaction in the discretization in the interior of the target grid. Proper discretizations

of the right-hand side function and the boundary condition functions are also performed. In our

hnpleumntation, tile corresponding discrete functions f,, ,_2, gi2 and g12 are formed by injection from

their continuous counterparts.

Next coarse grid. The next coarse grid is constructed by semicoarsening, where only meshsize in the

reference x direction is doubled.

Coarse-grid problem. The coarse-grid right-hand side function fc is formed by the folh)wing aver-

aging operator:

• ('

fil,i'2 z 0"Sf2il,i2 "q-0.25[ (1- 8)(f2i1--1,i2__ k -1- f2_l-l-l,i.e_k)

÷..(:,_,,,,.
f^,<.,,,= 0.511,/,,,+ (I- .,).f:_,-,,,2-_"+ .'f:_,-,.,._,-(_.+,)],

il = 1,2....M C-l, i.,= 1,2,...N

Step 4.

where :ti C and M (M = 2M °) are parameters defining the number of mesh spaces in the x direction

in the interior of the domain on tile coarse and fine grids respectively. N is the number of mesh

spaces in the y direction (the periodicity direction). In semicoarsening, N is the same on all the

grids involved in calculations. The parameters k and s are the fine-grid nonalignment parameters

(k + s = rot, k is integer, 0 < s < 1, m is the fine-grid aspect ratio, t = tan¢ is the tangent of the

nonalignment angle). The coarse-grid inflow boundary conditions are injected from the known true

solution to the continuous problem. (See Note 1 below.) New values of coarse-grid discretization

parameters such as the aspect ratio rn c', the nonalignment parameters k (' and sC, the coefficients

of the explicit cross-characteristic interaction terms in discretizations in the interior (A_: and A_')

and at the outflow boundary (fl_' and ,ElC') are calculated.

Recursion. Tile Steps 2 and 3 are reI)eated until tile coarsest possible grid is reached and its problem

is defined.

Note 1: Injecting true continuous solution vahms into the coarse-grid inflow boundary discretization is

the e_iest way to separate the issue of developing an efficient nmltigrid solver from tile issue of deriving a

prot)er high-order discretization to inflow boundary conditions. One possible solution for the latter is to use

a central (or a downwind) discretization at tile grid nodes adjacent to tile inflow boundary. In this case, the

coarse-grid inflow boundary conditions can be derived from those on the fine grid either by injection or by

averaging.

The execution of the FMG algorithm involves the following four steps:

Step I. Coarsest-grid solution. The problem on the coarsest grid is solved by some (direct or iterative)

method.

Step 2. Initial fine-grid solution approximation. The initial approximation u on the ('urrent]y fine grid is

derived from the coarse-grid solution u (' by an interpolation which is the fourth order in the interior
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of the domain (and the second order near tile outflow boundary) in the characteristic direction.

UC'.
'_2il ,i2 _1,12 '

IL2i'-l,i2 = _6 [

_1 =1,2,...ill c-1

+,_ n_' i k -t- u C'

nk-s ('t/([_F 1 ,i__F2(k+ 1 )-_- 'lli(-,' _ 2,i2 _ 2( k + 1 ) ) ] ,

(1- .s)(uCA'1_,i2+k + UMC_,,i__l,.)

q-"_ (IZAIC,i2+(k+l) q- l,i2-(k+l

i.e = 1,2,...N.

Step ,9. V Cycle. The obtained initial approxinlation is improved by one I'(0, 2) cycle.

Step 4. Recursion. Steps 2 and 3 are repeated until the target (finest) grid is reached. There one additional

V(0, 2) cycle is performed.

The total cost of this algorithm is about 30 minimal work units, where minimal work unit is defined

as the number of comtmter operations required to evaluate residuals on the target grid. This work-unit

count is about five times larger than usual in uniformly elliptic problems. It is contributed by (1) somewhat

expensive relaxation schemes using defect-correction type iterations, (2) semieoarsening increasing the cost

of coarse-grid calculations, and (3) the need to perform the second target-grid cycle. In fact, if the target

discretization was changed to the diseretization used in the correction step within relaxation (which has the

same approximation order as our target discretization), then the cost of relaxation sweeps would be twice

as cheap and, therefore, the total of the whole FMG algorithm would be reduced to 18 minilnal work units.

In our numerical tests, we chose tile right-hand side function f and and the inflow boundary condition

flmction g so that the function U(x, 9) = sin(0,x + O.vg) was the exact solution of the continuous problem

(2.2), (2.3). Tile tests were performed with a six-level FMG algorithnl solving the problem on a uniform

target grid with h_ = hv = It = 2 -s. We experimented with different values of parameters 0, and 0y. For

each component, we checked five different characteristic inclinations t = tan ¢5. Some representative results"

are collected in Tables 4.1 and 4.2 where the target-grid discretization error is compared with the algebraic

errors at three stages: immediately after obtaining the initial target-grid solution approximation and at tile

end of the first and tile second improving target-grid cycles. In the tables,/_ is the characteristic frequency

/_ = 0, + t0u, and h_ is the characteristic meshsize h_ = v/] - + t2h. A small absolute value of the normalized

characteristic frequency 13¢h_1 _ 0 indicates a characteristic component; when 0 << 1/3¢h¢1 < re/2, the

characteristic oscillation frequency is intermediate; and 7r/2 _< [/_h¢] _< rr characterizes a noncharacteristic

solution component. The last colunm marked "No" shows the number of target-grid cycles (including those

two from the FMG algorithm) required to get an approximation with the L_ norm of the residual error less

than 10 -m.

Some conclusions derived from analyzing the nmnerical results are following.

1. For characteristic components, the target-grid algebraic error is already less than the diseretization

error on Step 2 (obtaining the initial target-grid solution approximation). This is due to the explicit

terms introduced to all tile coarse-grid diseretizations. In this way, we obtain (nearly) the same

characteristic component discretization errors on all the grids (the difference is proportional to h4).

2. For components fast oscillating in the cross-characteristic direction, the algebraic error is much better
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TABLE 4.1

Multigrid six-level FMG solver: characteristic and intermediate solution components.

Discr. Algebraic error

t _3_h_ 0_ h 0.Th error initial 1 cycle 2 cycle No

Characteristic

0.1 0.000 0.393 -0.039

0.3 0.000 0.393 -0.118

0.5 0.000 0.393 -0.196

0.7 0.000 0.393 -0.275

0.9 0.000 0.393 -0.353

0.1 0.000 1.571 -0.157

0.3 0.000 1.571 -0.471

0.5 0.000 1.571 -0.785

0.7 0.000 1.571 -1.100

0.9 0.000 1.571 -1.414

Intermediate

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.197

0.205

0.220

0.240

0.264

0.197

0.205

0.220

0.240

{}.264

O.789

0.820

O.878

0.959

1.057

0.789

0.820

0.878

0.959

1.057

0.393 0.158

0.393 0.087

0.393 0.023

0.393 -0.035

0.393 -0.089

1.571 0.040

1.571 -0.266

1.571 -0.566

1.571 -0.86O

1.571 -1.150

0.393 0.750

0.393 0.702

0.393 0.682

0.393 0.684

0.393 0.703

1.571 0.632

1.571 0.349

1.571 0.093

1.571 -0.141

1.571 -0.357

components.

0.09572 0.01173

0.11295 0.03494

0.04570 0.06286

0.11295 0.08332

0.09572 0.10806

0.99990 0.08726

1.00006 0.12234

0.99996 0.18733

1.00006 0.12716

0.99990 0.19453

components.

0.00176 0.00028

0.00550 0.00099

0.00718 0.00121

0.01299 0.00229

0.01584 0.00248

0.02518

0.06842

0.13551

0.06039

0.01811

0.00618

0.01987

0.01981

0.01920

0.00537

0.02097 0.00223

0.01697 0.00325

0.01502 0.00428

0.02503 0.00389

0.03876 0.00543

0.05228 0.00902

0.06013 0.01651

0.10210 0.02764

0.10455 0.02441

0.03267 0.00633

0.26069 0.07341

0.33600 (}.08341

0.66490 0.09648

0.84395 0.19261

0.59167 0.26728

0.12903 0.02681

0.18361 0.03148

0.24374 0.04832

0.25873 0.06088

0.31203 0.04456

0.01842 0.11203

0.02952 0.10400

0.02903 0.09289

0.02328 0.14294

0.01640 0.15169

0.33494 0.21031

0.54903 0.35938

0.39790 0.42716

0.24156 0.35623

0.12979 0.27564

0.14177 1.07711

0.16808 1.43491

0.20206 1.67709

0.23211 2.15520

0.27629 1.81925

0.33086 0.76440

0.65990 0.93222

0.60069 1.09042

0.51163 1.04272

0.31980 1.35260

22

22

21

22

24

21

24

23

23

21

24

22

20

22

25

21

23

22

23

22

26

25

24

26

30

24

25

23

24

25

than the discretization one after the first improving target-grid cycle.

3. The second improving cycle is needed only for some components moderately oscillating in both the

characteristic and cross-characteristic directions. On finer grids, these components are eventually

transferred to the characteristic components. This justifies using FMG algorithm with only one V
J
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TABLE4.2
Multigrid six-level FMG solver: noncharacteristic solution components.

Discr.

/3_he Ov h Oxh error

Algebraic error

initial 1 cycle 2 cycle No

Noncharacteristic coml)onents.

0.1 1.579 0.393 1.539 0.76817

0.3 1.640 0.393 1.522 0.87096

0.5 1.756 0.393 1.560 1.04311

0.7 1.917 0.393 1.643 1.31669

0.9 2.113 0.393 1.760 1.70706

0.1 1.579 1.571 1.422 0.85619

0.3 1.640 1.571 1.169 1.07279

0.5 1.756 1.571 0.971 1.53469

0.7 1.917 1.571 0.818 1.59207

(}.9 2.113 1.571 0.700 1.59522

2.26395

2.42296

2.91390

3.18658

3.33678

1.85721

2.06405

2.59033

2.37166

2.33271

0.98437 0.17369

1.14909 0.41368

1.88121 0.64483

1.67748 0.29945

1.97781 0.47206

0.38794 0.07397

0.40828 0.11672

0.96062 0.27004

0.76083 0.22509

0.75898 0.14614

28

26

26

27
29

24

25

24

25

27

cycle on coarse levels.

Note 2: In nonelliptic problems, there are some "pathological" noncharacteristic components which

exhibit very small diseretization errors. Noncharacteristic components usually possess relatively large dis-

cretization errors (compared with characteristic components). However, a very special choice of parameters

(solution component U and angle of attack 0) can result in vanishing discretization errors. It is clear that

in such special situations we cannot expect the algebraic error to be smaller than or comparable to the

discretization error at any stage of the algorithm. In spite of the fact that the algorithm fails to reach the

discretization accuracy for.these components, the total (algebraic plus discretization) error in these excep-

tional cases is much smaller than in neighboring regular cases. Moreover, upon any reasonable perturbation

the behavior becomes normal: the algebraic error after the two improving target-grid cycles is already sub-

stantially below the level of the discretization error. It is thus clear in any case that the statement that

the algebraic error of the FMG solution is less than the discretization error will most likely hold in an), real

calculations (where mostly nonpathological components and angles of attack exist). A detailed analysis of

this phenomenon (for another type of nonelliptic equations) can be fotmd in [8].

5. Adaptive Multlgrid Algorithm (AMA). In this section, we present an adaptive multigrid al-

gorithm approxinmting the true solution of the differential problem with a relative accuracy e defined in

advance. The choice of the target grid is a part of the solution process. We restricted ourselves to consider-

ing only uniform target grids and the target-grid discretization ((2.12) for m = 1) is also unchanged. Thus,

the only parameter to be controlled is the target-grid mesh spacing h. The algorithm starts on a very coarse

grid where the problem is easy to solve and, then, proceeds to finer target grids. On each target grid, the

FMG algorithm defined in Section 4 is performed to solve the problem. The AMA stops further calculations

when the relative difference (in a required norm) between the solutions on the two currently finest target

grids is less than e. In our numerical experiments, the L_ norm of the difference between the solutions on

the previous target grid and the (injected) current-target-grid solution was served as the stopping criterion.

Formally, the adaptive nmltigrid algorithm AMA-FMG employing the FMG cycle described in Section

4 can be defined in the following 3 steps.
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Step I Coarsest-grid solution. Tile problem on tile coarsest grid is solved by some method•

Step 2 Solution on eulv'ent target grid• Let u 2h be the solution on the previous target grid with meshsize

2h. The current target grid is chosen to be the uniform grid with meshsize h. The FMG algorithm

is employed to obtain the target-grid solution 'a h.

Step 3 Comparison of the solutions. The solution u h is restricted to the previous target grid by some fine-

to-coarse intergrid transfer operator I_ h. In tile simplest case, I_ h is the injection operator. The

relative difference d_ is calculated as

-])_ u tldr = IIa h ,,/,. hll

Ilu hll

If d_ < e, then the solution on the current target grid is considered as final, otherwise algorithm

proceeds to the next (finer) target grid (Step 2).

Figures 5.1 and 5.2 demonstrate the algorithm performance for different solution components and dif-

ferent angles of attack. In these experiments, the known true solution of the differential problem (2.2),(2.3)

wa_s U(x,y) = sin(01x + 0.2y). Tile characteristic frequency _ is calculated as z3_ = (01 + tO.2)/v_ + t"2. In

all the tests shown on Figure 5.1, the nonalignment parameter t was set to t = 0.2 and the frequencies B_

and 02 were varied• We tested a large variety of frequencies. Figure 5.1 demonstrates just a representative

sample of experiments. In the second set of experiments illustrated by Figure 5.2, the frequencies /3_ and

02 were fixed but tile angle of attack was changed. In all the tests, our goal was to obtain a l_,-aeeurate

solution approximation uh (e = 0.01), where tile accuracy measured as the L_ norm of the relative total error

(llc - ,h II_/lluIl_ < _), Recall. that the algorithm itself does not use the true solution at all. The decision

whether to stop calculation or proceed to the next finer target grid is Inade by means of comparison of the

computed solutions on the current and previous target grids. On the figures, the vertical coordinate marks

(in the logarithmic scale) the total error of approximations obtained at different stages of the algorithm.

Tile vertical lines separate the calculations performed on different target grids. The coarsest grid problem is

solved by the FMG algorithm. The first value on each grid is the total error of the approximation obtained
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after the FMG solution interpolation (Step 2 in the FMG algorithm description in Section 4).. The two

following values are the total errors of the approximations obtained after the first and the second target-grid

cycles respectively.

The demonstrated Alk_IA performance is quite satisfactory. The total (relative) accuracy of final solutions

is always much better than the desired l%-accuracy. This overshooting is actually natural since in order to

verify that the accuracy of the solution on a grid with meshsize h, the algorithm must compute the solution
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on thenextfinegridwithmeshsizeh/2. Vv_ tried to change the tolerance of the algorithm weakening the

stopping criterion to d,. < De (D > 1). We tested the same test-cases as in experiments traced on Figure 5.1.

For D = 2, the algorithm sharply improved its efficiency (see Figure 5.3) finishing the calculations exactly

on the grids where the required l%-accuracy had been reached. Further increase of D results sometimes in

final solutions with too large total errors.

6. Conclusions and Further Developments. Tile main difficult), appearing in solving nonelliptic

equations by multigrid methods is a poor coarse-grid approximation to the characteristic error compo-

nents. A novel approach proposed in this paper is based on the idea of using semicoarsening together with

introduction of explicit terms into coarse-grid discretizations in order to maintain the safile coarse-grid cross-

characteristic interaction as on tile target uniform grid. This constructions allows us to get a good coarse-grid

approximation to the characteristic components and in this way to solve the aforementioned problem.

Several multigrid algorithms were tested in this paper. All of them solve the two-dimensional constant-

coefficient narrow second-order discretization of the convection equation on uniform Cartesian grids where

tile grid lines do not align with the characteristic direction. The following features of the tested multigrid

algorithms were reported:

1. The algorithms used colored relaxation schemes on all tile levels. It makes them very attractive for

paralM computing.

2. The residual asymptotic convergence rate of the proposed I'(0,2) multigrid cycle is about 3 per

cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid

algorithms using full coarsening. The reported efficiency does not deteriorate with increasing tile

cycle depth (number of levels) and/or refining the target-grid mesh spacing.

3. The full nmltigrid algorithm (FMG) using two V(0, 2) cycles on the target grid and just one V(0, 2)

cycle on all the .coarse grids always provides an approximate solution with tile algebraic error less

than the discretization error. The estimates of the total work in the FMG algorithm are between 18

an(t 30 minimal work units (depending on the target discretization). Thus, tile overall efficiency of

the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency.

4. A novel approach to deriving a discrete solution approximating the true continuous solution with

a given relative accuracy is developed. An adaptive multigrid algorithm (AMA) using comparison

of the solutions on two successive target grids to estimate the accuracy of the current target-grid

solution is defined. This new criterion for the discrete approximation accuracy is much inore effective

and reliable than the residual monitoring widely used in practice. A desired relative accuracy e

(0 < • << 1) is accepted as an input parameter. The final target grid on which this accuracy can be

achieved is chosen automatically in the solution process. The relative accuracy of the discrete solution

approxilnation ot)tained by AMA is always better than the required e-accuracy. The computational

work required to compute this approximate solution is (nearly) optimal (comparable with the cost

of tile FMG algorithm applied to solve the problem on the optimally spaced target grid).

6.1. Extension to Three-Dimensional Problems. In 3D constant-coefficient case, tile characteris-

tics of the differential equation are still straight lines. Therefore, the low-dimensional prototype is essentially

the same as (2.4)

(01, , ( )?Zil+l,i2+tu,ia+t: + 3ttil,i'e -- 5tlit-l,i'.'-tu,ia-t= q- _il-2,i2-2tu,ia-2t. _ fi_ ,t2,ia_

v, vh + +,2.
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where t u = tan(Ou) is the tangent of the angle between the x-axis and the projection of the characteristic

going through the grid node (il, i2, i3) onto the x-y coordinate plane; t: = tan(C:) is the same for the x-z

coordinate plane. The "horizontal inclination assumption" is replaced in 3D with tile x-axis inclination

assumption: ItyI < 1 and it: I < 1. Similar to 2D, the full dimensional discretization is derived from (6.1) by

replacing values at the points with fractional indexes by (bilinear) interpolation from the values at genuine

grid points placed in the same y-z grid plane. The second-order upwind discretizations are used at the

outflow boundary. The nmltigrid solvers employ the semicoarsening procedure, where the only x-directional

meshsize is doubled at each coarsening step. Explicit correcting terms introduced on coarse grids include

discrete approximations to all possible third and fourth derivatives with respect to y and z. The coefficients

of these terms are chosen froin the condition that the first differential approximation to the coarse-grid

discretization taken for the characteristic components is exactly the same _s the characteristic-component

FDA to the target-grid discretization. The 3D relaxation schemes used in the multigrid cycles are colored

plane and pointwise defect-co_'ection-type schemes where relaxation of a y-z plane (with given x-coordinate

il) replaces the 2D vertical line relaxation wherever it is necessary. The coefficient A of the additional

stabilizing term which is the discretized fourth derivative with respect to the characteristic variable ( is

kept to be A = 0.084. Note, that in plane relaxations, the precise solutions of planes are not required. The

smoothing rate of a 3D plane relaxation scheme employing just one 2D V cycle to solve a plane problem is

very much the same as the smoothing rate of a relaxation scheme solving plane problems to zero residuals.

The intergrid transfers used in different Inultigrid algorithms are characteristic aligned and essentially repeat

those in 2D: the restriction operators are upwind first order in cycles and synunetric second order in FMG;

the prolongation operators are symmetric second order in V cycles and symmetric fourth order in FMG.

Preliminary experiments confirm that the efficiency of the proposed approach does not deteriorate in 3D.

6.2. Extension to Variable Coefficients. A generalization of the presented approach to smooth

nonrecirculating variable velocity fields can be done in the way first tested in [6]. The cornerstone of this

technique is a flexible recursive intergrid (fine-to-coarse) parameter transfer providing the target-grid accu-

racy in tracing the characteristic trajectories on coarse grids. In this way, we can construct an accurate basic

coarse-grid discretization well aligned with the characteristic track. The cross-characteristic interaction in

this discretization is again weaker than on the target grid and, therefore, we can supply it with explicit terms

to get a good coarse-grid correction to the fine-grid characteristic error components. The main changes in

discretizations to be obtained are confing from the luck of symmetry in the discrete low-dilnensional proto-

type. It is still a one-dimensional four-point second-order discretization of the advection equation but on a

nonuniform grid. The upwind-biased discretization corresponding to the Van Leer's scheme with _ = 0 is

the average of the second order central L C and pure upwind L u s(:hemes:

l_{ C' . LUui_,i2"}L_ti_,i2 =- 2 \Z u,_,_2 +
/

_ ].(6.2) LC'Uil io hi+h2 _lUi'+i,i2+(kl+s') + hA" -- Uil,i2 -- h2Uii-l,i2+(ko+s2)

- , ]LUuil'i2 -- h3 L_ h2 tt _/l!'[ ,'_2 -- h2 _I --i,72+(t"2+s2) + h2+h3Uil-2,i2+(k3+s3) ,

where hi, h2, and h3 are distances between the discretization nodes of the low-dimensional prototype mea.

sured along the characteristic going through the grid point where the discrete operator is defined; kl, k2,

and k3 are integers denoting the vertical displacements (in meshsizes) from the point (i1,i2); sl, s2, and

s3 (0 < s_, s2, s3 < 1) are the tuning parameters. (See Figure 6.1 for a pictorial explanation of the two-

dimensional discretization stencil.) Generally speaking, this 2D scheme is second-order accurate only on those
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FIG. 6.1. Coarse-grid discretization: variable velocity field.

fine grids where the smoothness of velocity field can be exploit. The coefficients of the explicit terms are now

calculated from the comparison of characteristic-component FDA coefficients of the true cross-characteristic

derivatives (rather than the y-directional derivatives as in the constant-coefficient cases) because velocity

directions may be different for different grid nodes (especially, on coarse grids). Preliminary numerical tests

demonstrate a high efficiency of the approach in application to the variable-coefficient problems.

6.3. Avoiding Line Relaxations on Coarse Grids. If the characteristics of the differential equation

change their general orientation over different parts of the domain, the entire domain should be divided into

(possibly overlapped) subdomains (each occupying an O(1) part of the donmin and having a unique reference

axis compatible throughout with the characteristic orientation) and the relaxation sweeps should be applied

separately on each of tim subdomains. In this view, using line relaxation schemes is undesirable because of

possit)le luck of a global definition for lines. In many cases, this problem can be easily avoided since there

is no need to solve simultaneously all the equation centered at the same vertical grid line. In other words,

a block relaxation updating just a part of the line points at a time would be efficient as well. To keep the

efficiency, the size of the overlap between neighboring blocks should be proportional to the relative coupling

RC value (see Sections 3.2.3 and 3.3.1). This is one possible way" to adjust the approach to a multiblock

structure.

Another. even more efficient way is to widen the basic coarse-grid discretization on tile grids (or even at

separate grid nodes) where the value of the relative coupling is greater than (or comparable with) 1. The

widening of discretization schemes is illustrated on Figure 6.2.

Wi(lened discretization schemes possess stronger inherent cross-characteristic interaction and, therefore,

the weight of the explicit terms in the total cross-characteristic interaction is reduced (RC is smaller). This

technique is efficient only on grids with large enough RC, since the necessary condition to keep the efficiency

is that the pointwise relaxation scheme is sensitive to tile characteristic error components fast oscillating in

the cross-characteristic direction. Combination of semicoarsening with widening discretization stencils allows

us to keep RC bounded (around 1) and avoid in this way using line relaxation schemes making pointwise

schemes always efficient.
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are unifornt grids with meshsizes h;r = h_ = It. The problem is homogeneous (f = 0). o2 is the frequency of the incoming

oscillation. The nonalignment parameter t = 0.2.

6.4. Note on Downstream Relaxation. The main subject of this paper is multigrid algorithms using

colored relaxation schemes and, therefore, possessing a great parallelization potential. In this section, we

remark about V cycles with line downstream (sequential order) relaxation schenms, x,_,_ already mentioned

that the efficiency of a colored relaxation scheme improves when more colors (in horizontal direction) are

used. In this extend, the downstream relaxation is an extreme case where the number of colors coincides

with the number of grid nodes in tim x-direction. The downstream line relaxation demonstrates the best

smoothing properties among other schemes. The smoothing factor Stud of this scheme is defined as
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L(o)- +L,(o,)+o.)max 1 -
Stud(0) = "/2<t0_l<n L3(0y) + L2(O_)e -_°= + Ll(Oy)e -i20:

See all the definitions (for 0, 0_, L(0), L/(0y), j = 1, 2, 3, 4, 5) in Section 3.3. The absolute value of Stud(3) is

always less than 0.4. Figure 6.3 shows excellent residual convergence rate histories of the I'(0, 2) cycle using

the downstream line relaxation scheme. Different plots correspond to cycles starting on different uniform

target grids.
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